Affiliation:
1. Australian School of Petroleum and Energy Resources, University of Adelaide, Adelaide 5005, Australia
2. Chevron Australia Pty. Ltd., 250 St Georges Terrace, Perth WA 6000, Australia
3. Centre for Energy Geoscience, School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
Abstract
ABSTRACTAlthough acknowledged to be a simplification, the rate of sediment supply is usually assumed to be constant in sequence stratigraphic interpretations of clastic shelf systems. The simplified assumption taken in this work is that sediment supply can be represented by sine curves linked to climate changes driven by Milankovitch cycles. Three orders of sediment supply sine curves (amplitude and frequency scaled to order) are convolved with three orders of Milankovitch-forced eustatic sea-level sine curves and a constant rate of subsidence to generate curves for the ratio of rate of accommodation development to rate of sediment supply (δ A /δ S ). The relative-sea-level curve is then held constant whilst sediment supply is systematically changed from being constant to being cyclical across the three orders of Milankovitch frequencies and being in-phase, and out-of-phase with the eustatic cycles by 90°, 180°, and 270°. For each scenario, stratal architecture is then represented for sixty consecutive parasequences (fifth-order, regressive–transgressive shelf transit cycles) by converting the δ A /δ S curves into pseudo thickness / sandstone fraction plots (TSF plots). Constant sediment supply, in-phase sediment supply, and 180°-out-of-phase sediment supply produce symmetrical stratal geometries with equal periods of progradation, aggradation, and retrogradation. When sediment-supply cycles are 90°-out-of-phase (supply peak occurs later than sea-level peak), stratal geometries are asymmetrical with progradational architectures being dominant. When sediment-supply cycles are 270°-out-of-phase (supply peak occurs earlier than sea-level peak), stratal geometries are also asymmetrical but retrogradational architectures are dominant. These patterns are reproduced at all three orders of stratigraphic hierarchy (parasequence, sequence, and composite sequence). Comparison of these synthetic stratal geometries to real-world stratal geometries from Triassic to Neogene rocks across both the fifth-order (parasequence) and fourth-order (sequence) of stratal hierarchies suggests a consistently occurring asymmetrical, progradation-dominant motif. This indicates that 90°-out-of-phase sediment supply (supply peak occurs later than sea-level peak) may be a common occurrence through geological time. The work also corroborates the findings of earlier workers and suggests that sequence stratigraphic surfaces can change nature along depositional strike due to out-of-phase sediment supply and can thus also be diachronous. This work conceptually illustrates that Milankovitch climate-change-induced sinusoidal-sediment-supply cycles, out-of-phase with sinusoidal eustatic-sea-level cycles, may produce commonly observed asymmetrical stratal architectures and should be considered when invoking causal mechanisms for stratal architectures on clastic shelves.
Publisher
Society for Sedimentary Geology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献