Quantifying river avulsion activity from satellite remote sensing: Implications for how avulsions contribute to floodplain stratigraphy in foreland basins

Author:

Valenza Jeffery M.1,Edmonds Douglas A.2,Weissmann Gary S.3

Affiliation:

1. 1 Department of Geography, University of California, Santa Barbara, 1832 Ellison Hall, Santa Barbara, California 93106, U.S.A.

2. 2 Department of Earth and Atmospheric Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405, U.S.A.

3. 3 Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, U.S.A.

Abstract

ABSTRACT The rarely witnessed process of river avulsion repositions channels across floodplains, which influences floodplain geomorphology and stratigraphic architecture. The way avulsions redirect water and sediment is typically generalized into one of two styles. Avulsions proceeding through rapid channel switching and producing little to no floodplain disturbance are annexational, while those that involve sequential phases of crevassing, flooding, and eventual development of a new channel are progradational. We test the validity of these avulsion style categories by mapping and characterizing 14 avulsion events in Andean, Himalayan, and New Guinean foreland basins. We use Landsat data to identify how avulsions proceed and interpret the possible products of these processes in terms of geomorphic features and stratigraphy. We show that during annexation the avulsion channel widens, changes its meander wavelength and amplitude, or increases channel thread count. During progradation, avulsion channels are constructed from evolving distributary networks. Often beginning as crevasse splays, these networks migrate down the floodplain gradient and frequently create and fill ponds during the process. We also see evidence for a recently defined third avulsion style. Retrogradation involves overbank flow, like progradation, but is marked by an upstream-migrating abandonment and infilling of the parent channel. Avulsion belts in this study range from 5 to 60 km in length, and from 1 to 50 km in width. On average, these events demonstrate annexational style over 22.4% of their length. Eleven of 13 events either begin or end with annexation, and seven both begin and end with annexation. Only one event exhibited progradation over the entire avulsion-belt length. While there are many documented examples of purely annexational avulsions, we see little evidence for completely progradational or retrogradational avulsions, and instead suggest that a given avulsion is better envisioned as a series of spatiotemporal phases of annexation, progradation, and retrogradation. Such hybrid avulsions likely produce significantly greater stratigraphic variability than that predicted by the traditional end-member model. We suggest that a time-averaged, formation-scale consideration of avulsion products will yield more accurate characterizations of avulsion dynamics in ancient fluvial systems.

Publisher

Society for Sedimentary Geology

Subject

Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3