A “Local First” Approach to Glacigenic Sediment Provenance Demonstrated Using U-Pb Detrital Zircon Geochronology of the Permo-Carboniferous Wynyard Formation, Tasmanian Basin

Author:

Ives Libby R. W.1ORCID,Isbell John L.1ORCID,Licht Kathy J.2

Affiliation:

1. University of Wisconsin – Milwaukee

2. Indiana University-Purdue University Indianapolis

Abstract

We propose that a “local first” approach should be applied to the interpretation of provenance indicators in glacigenic sediments of all depositional ages, especially where the glacier flow path is poorly constrained and the records of potential source lithologies are incomplete. Provenance proxies, specifically U-Pb detrital zircon geochronology, of glacigenic sediments are commonly used to infer the size and distribution of past ice centers, which are in turn used to inform ancient climate reconstructions. Interpretations of these proxies often assume that similar provenance signals between glacigenic units of the same depositional age are evidence that they were deposited by the same glacier, even when those units are, not infrequently, separated by thousands of kilometers. Though glaciers are capable of transporting sediment great distances, this assumption is problematic as it does not acknowledge observations from the geologic records of Pleistocene ice sheets that show provenance proxies in glacial sediments are most likely to reflect proximal (within 100 km) sediment sources located along a specific flow path. In a “local first” approach, provenance indicators are first compared to local source lithologies. If the indicator cannot be attributed to proximal sources, only then should progressively more distal sources be investigated. Applying a local first approach to sediment provenance in ancient glacial systems may result in significant revisions to paleo ice sheet reconstructions. The effectiveness of the local first approach is demonstrated here by comparing new U-Pb detrital zircon dates from the Permo-Carboniferous glacigenic Wynyard Fm with progressively distal source lithologies along the glacier’s inferred flow path. The Wynyard Fm and source lithologies were compared using an inverse Monte-Carlo unmixing model (DZMix). All measured Wynyard Fm detrital zircon dates can be attributed to zircon sources within 33 km of the sample location along the glacier’s flow path. This interpretation of a proximal detrital zircon provenance does not conflict with the popular interpretation made from sedimentological observations that the Wynyard Fm was deposited by a large, temperate outlet glacier or ice stream that flowed south-to-north across western Tasmania. Overall, a local first approach to glacial sediment provenance, though more challenging than direct comparisons between glacigenic sedimentary deposits, has the potential to elucidate the complex histories and flow paths of glacial sedimentary systems of all depositional ages.

Publisher

Society for Sedimentary Geology

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3