Petrology of Bengal Fan turbidites (IODP Expeditions 353 and 354): provenance versus diagenetic control

Author:

Limonta Mara12,Garzanti Eduardo1,Resentini Alberto1

Affiliation:

1. 1 Laboratory for Provenance Studies, Department of Earth and Environmental Sciences, University of Milano–Bicocca, 20126 Milano, Italy

2. 2 Centre de Recherches Pétrographiques et Géochimiques, Université de Lorraine–CNRS, 54501 Vandeouvre-lès-Nancy, France

Abstract

ABSTRACT High-resolution petrographic and heavy-mineral analyses of Bengal Fan turbidites from six cores drilled during IODP Expeditions 353 and 354 elucidate factors controlling their intersample compositional variability as a key to understanding sedimentary processes and erosional evolution of the Himalayan belt since the Miocene. Bengal Fan turbidites are feldspatho-quartzose to litho-feldspatho-quartzose with plagioclase > K-feldspar; slow-settling micas increase in abundance in very fine sand and coarse silt. The feldspar/quartz ratio and higher-rank metamorphic rock fragments notably increase from uppermost Miocene to Pleistocene deposits, which is ascribed to the onset of rapid exhumation of the Eastern Himalayan syntaxis since ∼ 5 Ma. The same trends are documented in Nicobar Fan turbidites, confirming that they belong to the same sedimentary system. Both Bengal and Nicobar fans record a pulse in mass accumulation rate at Tortonian times, when supply of sedimentary and very-low-grade metasedimentary detritus reflected accelerated exhumation of the Lesser Himalaya. In contrast to foreland-basin sediments, where ferromagnesian minerals have been completely dissolved in strata as young as Pliocene–Pleistocene, in both Bengal–Nicobar and Indus fans amphibole invariably represents about half of the moderately rich to rich transparent-heavy-mineral suite, demonstrating that amphibolite-facies Greater Himalaya metamorphic rocks were widely exposed in the Himalayan range well before the late Miocene and possibly since the late Oligocene, as indicated by a few sillimanite and kyanite grains in Bengal Fan sediments as old as 23 Ma and 28 Ma, respectively. Diagenetic dissolution strongly affected olivine and pyroxene in strata older than the middle and early Pleistocene, respectively, whereas amphibole decreases markedly through progressively older Miocene strata. Ferromagnesian minerals and sillimanite are almost completely dissolved in lower Miocene strata, where durable zircon, tourmaline, rutile, and apatite make up half of the strongly depleted heavy-mineral assemblage. Quaternary turbidites from the six studied cores have virtually the same compositional signatures, testifying to efficient homogenization by turbidite transport and reworking across the fan. Turbidites in western cores closer to peninsular India (U1444A and U1454B) are not different from those in eastern cores, indicating very minor supply from the subcontinent. Forward-mixing calculations based on integrated petrographic and heavy-mineral data indicate that sand supply from the Brahmaputra River to Quaternary turbidites was four times larger than supply from the Ganga River, indicating up to six times higher sediment yields and erosion rates in the Brahmaputra than in the Ganga catchment, largely reflecting superfast erosion of the Eastern Himalayan syntaxis.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3