Abstract
In this work, we obtained the time evolution of the wave function of a limited quantum system (1D Box), hence getting a mathematical model to describe the system. By using programming computes, it performs a time evolution that decomposes the initial state into the 2,10, and 20 lowest energy eigenstates. Finally, by comparing numerical de-composition coefficients for the wave function to the analytical values, it found the number of knots increases directly versus the energy of the particle's quantum state. As a result, the mean bending given by the second derivative which is proportional to the kinetic energy operator should increase. We found there is a negligible mean and standard deviation of the energy in units of the ground state energy.