ESTIMATING STOCK RETURNS USING ARTIFICIAL NEURAL NETWORKS: AN EXPERIMENTAL DESIGN WITH AN EVIDENCE FROM IRAQ STOCK EXCHANGE

Author:

Adnan Mohammed H,Isma’eel Mustafa Muneer

Abstract

The research aims to estimate stock returns using artificial neural networks and to test the performance of the Error Back Propagation network, for its effectiveness and accuracy in predicting the returns of stocks and their potential in the field of financial markets and to rationalize investor decisions. A sample of companies listed on the Iraq Stock Exchange was selected with (38) stock for a time series spanning (120) months for the years (2010_2019). The research found that there is a weakness in the network of Error Back Propagation training and the identification of data patterns of stock returns as individual inputs feeding the network due to the high fluctuation in the rates of returns leads to variation in proportions and in different directions, negatively and positively.

Publisher

IJRSSH Publication

Subject

General Medicine

Reference27 articles.

1. 1. Ali, O., Abdul Mohsen & Hassan, Z., Ibrahim (2018). Use projection pursuit regression and neural network to overcome curse of dimensionality. Journal of Economics and Administrative Sciences, 24(104),344..https://doi.org/10.33095/jeas.v24i104.89

2. 2. Asadi, S., Hadavandi, E., Mehmanpazir, F., & Nakhostin, M. M. (2012). Hybridization of evolutionary Levenberg-Marquardt neural networks and data preprocessing for stock market prediction. Knowledge-Based Systems, 35, 245-258. https://doi.org/10.1016/j.knosys.2012.05.003

3. 3. Ashour, M. A. H., Jamal, A., & Helmi, R. A. A. (2018). Effectiveness of artificial neural networks in solving financial time series. International Journal of Engineering & Technology, 7(4.11), 99-105. https://www.researchgate.net/profile/MarwanAshour/publication/328273545_Effectiveness_of_Artificial_Neural_Networks_in_Solving_Financial_Time_Series/links/5bcb182e299bf17a1c62d1a3/Effectiveness-of- Artificial-NeuralNetworks-in-Solving-Financial-Time-Series.pdf

4. 4. Björklund, S., Uhlin, T., Blomvall, J., & Tang, O. (2017). Artificial neural networks for financial time series prediction and portfolio optimization. Master of Science Thesis in Industrial Engineering and Management Department of Management and Engineering, Linköping University. https://www- prod.soderbergpartners.se/globalassets/sv/omoss/karriar/arets- finansuppsats/bjorklund-s.--uhlin-t.-artificial-neural-networks-for-financialtime- series-prediction-and-portfolio-optimization.pdf

5. 5. Chaigusin, S. (2011). An investigation into the use of neural networks for the prediction of the stock exchange of Thailand. http://ro.ecu.edu.au/cgi/viewcontent.cgi- ?article=1386&context=theses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3