Prediction of Mechanical Behavior of Epoxy Polymer Using Artificial Neural Networks (ANN) And response Surface Methodology (RSM)

Author:

Saada Khalissa1,Amroune Salah1,Zaoui Moussa1

Affiliation:

1. Department of Mechanical Engineering, University of Mohamed Boudiaf-M’Sila, Algeria. Laboratoire de Matériaux, et Mécanique des Structures (LMMS), Université de M’sila. Algérie.

Abstract

The aim of this study is to analyze the effect of different geometries and sections on the mechanical properties of epoxy specimens. Five tensile tests were carried out on three types of series. The experimental results obtained were 1812.21 MPa, 3.90% and 41.91 MPa for intact specimens, 1450.41 MPa, 2.16% and 21.28 MPa for specimens with hole and 750.77 MPa, 2.77% and 11.89 MPa for specimens with elliptical -notched for Young's modulus, strain and stress respectively. In addition, the experimental results indicated that the mechanical properties of both (Young's modulus value and stress value) were higher in an intact specimen. Afterwards, the nonlinear functional relationship of input parameters between epoxy sample geometries and sections was established using the response surface model (RSM) and the artificial neural network (ANN) to predict the output parameters of mechanical properties (Young's modulus and stress). In addition, the design of experiment was developed by the Analysis of the Application of Variance (ANOVA). The results showed the superiority of the ANN model over the RSM model, where the correlation coefficient values for the model datasets exceed ANN (R2 = 0.984 for Young's modulus and R2 = 0.981 for the constraint).

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3