A Simple and Efficient eight node Finite Element for Multilayer Sandwich Composite Plates Bending Behavior Analysis

Author:

Belkaid Khmissi1,Boutasseta Nadir1,Aouaichia Hamza1,Gaagaia Djamel Eddine1,Deliou Adel2,Boubir Badreddine1

Affiliation:

1. Research Center in Industrial Technologies CRTI P.O.Box 64, Cheraga, Algeria

2. Laboratory of Materials and Reactive Systems LMSR, University Djillali, Liabes, Sidi Bel-Abbes, Algeria.

Abstract

In this paper, a C0 simple and efficient isoparametric eight-node displacement-model based on higher order shear deformation theory is proposed for the bending behavior study of multilayer composites sandwich plates. Difficult C1-continuity requirement is overcome by extracting the seven degrees of freedom from strain relations for each element node: two displacements for in-plane behavior and five bending unknowns namely: a transverse displacement, two rotations and two shear angles, which results in a kinematic approximation formulation having only first order derivative requirement. The governing equations of the element (constitutive, virtual work and equilibrium equations) are implemented for the prediction of approximate solutions of deflections and stresses of sandwich plates linear elastic problems. Thereby, the formulation element is able to present a cubic in-plane displacement along both core and faces sandwich thickness, as well as, the shear stresses are found to vary as quadratic field without requiring shear correction factors and independent from any transverse shear locking problems. The accuracy and validity of the proposed formulation is verified through the numerical evaluation of displacements and stresses and their comparison with the available analytical 3D elasticity solutions and other published finite element results.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3