The investigation of additive manufacturing and moldable materials to produce railway ballast grain analogs

Author:

Szabó Bence1,Pásthy L.1,Orosz Á.1ORCID,Tamás K.1ORCID

Affiliation:

1. Budapest University of Technology and Economics, Hungary

Abstract

The size and shape of individual grains, play an important role in the mechanical behavior of granular materials such as the strength and stability of railway ballast. The aim of this research is to study materials from which uniform, reproducible grains with irregular convex geometry can be created by molding and additive manufacturing technologies in order to create reproducible artificial assemblies that can be used in experiments. Packings with determined grain shape results more controlled investigations contrarily to using natural grains with random geometry. Specimens were made from railway ballast materials, materials used in the construction industry, additively manufactured and molded polymers, and certain low-strength materials. Uniaxial compression and bending tests were conducted on these specimens. The mechanical properties of typical railway ballast materials (basalt and andesite) were compared with the properties of artificially produced materials. The results show that for grain reproduction the molding technology is recommended with the use of polyester-crushed stone composite and ceramic powder. Furthermore, the additive manufacturing was recommended with PolyJet or Multi Jet Fusion technology as they have the feasibility to produce grains with similar material properties to the properties of basalt and andesite.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3