Diffusible hydrogen content in submerged arc welds of a S960 type steel

Author:

Türker Mehmet1

Affiliation:

1. Istanbul , Turkey

Abstract

Abstract Hydrogen induced damage is a dangerous phenomenon affecting the weld quality with regard to construction service life even without visible indication. The determination of diffusible hydrogen in weld metal has been standardized at an international level in ISO 3690:2012. This international standard specifies the sampling and analytical procedure for the determination of diffusible hydrogen in martensitic, bainitic and ferritic steel weld metal which arises from the welding of such steels using arc welding processes with filler metal. In this study, S960QL steel is extensively used in the heavy transport, lifting and mining industry, where mobile or fixed structures have to carry high loads – often in safety critical situations. In order to sustain extreme characteristics of these high strength low alloy steels, it is a must to reduce the manufacturing defects. In the investigations presented in this paper, the influence of arc length on the weld metal hydrogen concentration was studied according to the ISO DIS 3690 in S960QL type steel with submerged arc welding. Measurement of the diffusible hydrogen was carried out by means of carrier gas hot extraction method. The weld seams with different arc length have similar chemical compositions. Maximum hardness values in the range of 410–425 HV1 were measured in the HAZ on both vertical and horizontal rows in welded structure with two mm wire diameter due to recrystallization condition. For four mm wire diameter, the hardness decreasing which is depending on the grain coarsening in the welded samples with two mm was not occurred in the weld seam-HAZ interface. The larger weld pool and the long arc length increased possibility of hydrogen pick-up and absorbing. Because of this reason, the diffusible hydrogen contents in the welded structure increased in accordance with the arc length.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference32 articles.

1. Thermomechanical response of HSLA-65 steel plates: Experiments and modeling;Mechanics of Materials,2005

2. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel;Materials Science and Engineering A,2014

3. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure;Materials Science and Engineering A,2013

4. Effect of microstructural parameters;microtexture and matrix strain on the Charpy impact properties of low carbon HSLA steel containing MnS inclusions, Materials Science and Engineering A,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3