Investigation of the Mechanical Properties and Chemical Resistance of PC/PBT/Impact Modifier Blends

Author:

Lyu M.-Y.1,Pae Y.2,Nah C.3

Affiliation:

1. Institute of Precision Machinery Technology, Seoul National University of Technology, Seoul, South Korea

2. ADMS-Tech Co., Ltd., Choongnam, South Korea

3. Department of Polymer Science and Technology, Chonbuk National University, Chonbuk, South Korea

Abstract

Abstract Mechanical properties, flow characteristics and chemical resistance of polycarbonate (PC)/poly(butylene terephthalate) (PBT)/impact modifier (IM) blends were investigated over the wide composition range of PC and PBT. Mechanical properties of the PC/PBT/IM blends for two different IMs, butadiene based IM and butyl acrylate based IM, were studied. For the study of chemical resistance of the PC/PBT/IM blends, test specimens were dipped in solvent, thinner, and then variations of mechanical properties were analyzed. Tensile and flexural strengths were increased linearly and heat distortion temperature (HDT) also increased as PC content in the blends increased. Impact strength increased drastically as PC content in the blends increased up to 50 wt.-%, and then it leveled out for over 50 wt.-% of PC. Flowability of the blends decreased as PC content increased. Impact strengths of the blends were different from IMs specially at low temperatures. The blends with butyl acrylate based IM showed slightly higher impact strength than the blends with butadiene based IM at 0°C and room temperature. However, the blends with butadiene based IM showed remarkably higher impact strength than the blends with butyl acrylate based IM at the temperatures below 0°C. After the chemical treatment of test specimens, tensile and flexural strengths decreased, and impact strength increased as PC content in the blends increased. PC in the blends would become mild and ductile when it contacted with solvent, thus the impact strength increased while tensile and flexural strengths decreased.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3