Direct Measurement of Fiber Temperature in the Continuous Drawing Process of PET Fiber Heated by CO2 Laser Radiation

Author:

Okumura W.1,Yamaguchi T.1,Ohkoshi Y.1,Gotoh Y.1,Nagura M.1

Affiliation:

1. Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan

Abstract

Abstract Poly(ethylene terephthalate) (PET) fiber was heated by carbon dioxide laser radiation during the continuous drawing process. Numerical calculation shows that the PET fiber can be heated much more rapidly and uniformly by heat radiation than by convective heat transfer through the fiber surface. During CO2 laser heated drawing, temperature in the vicinity of a neck-like deformation can be measured on-line with high precision, because the neck-like deformation is located within a range of 0.5 mm. We measured the fiber temperature profiles on the drawing process by IR thermometer that has a range resolution of 0.355 mm. The temperature at which neck-like deformation of the fiber initiates is higher than Tg when draw ratio is less than 4.5, but lower than Tg when draw ratio is more than 5.5. The maximum fiber temperature in the drawing process increases with draw ratio, up to 208°C for a draw ratio of 6.0. The rate of orientation-induced crystallization in the drawing process was estimated by comparison of measured temperature profiles with calculated temperature profiles.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3