Crystallization behavior, Al-Ce intermetallic formation, and microstructure refinement of near-eutectic Al–Si alloys by rare-earth element additions

Author:

Chi Bo1,Shi Zhiming1,Wang Cunquan1,Wang Liming1,Lian Hao1,Zhang Ruiying1,Wang Huhe1

Affiliation:

1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot , China

Abstract

Abstract Near-eutectic Al-Si alloys have low strength and high brittleness because of the presence of many eutectic b-Si flakes, needle-like Al-Fe-Si intermetallics, and coarse α-Al grains. This study disclosed the effects of cerium-rich RE (rare earth) element modification on orientation characters of crystals, formation of Al-Ce compounds, and microstructural refinement to improve the microstructure and mechanical properties of the alloys. The RE addition depressed preferential growth along the close-packed and/or sub-closepacked planes and promoted growth along the non-closepacked planes, in which La and other elements were dissolved into needle-like Al11Ce3 phase. When the temperature decreased, Al11Ce3 was preferentially crystallized from the melts and then devitrified by attaching to the surface of β-Al5FeSi needles. Moreover, many small Al11Ce3 particles were precipitated in the matrix and on the Si surface by a T6 heat treatment. Eutectic β-Si phases were constructed into discontinuous networks, short rods, and even particles by RE additions, which were further transformed into fine nodules following the T6 treatment. α-Al grains and primary β-Al5FeSi needles were simultaneously refined. The addition of 1.0 wt.% REs and subsequent T6 treatment yielded the highest tensile strength, elongation, and hardness of the alloy.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3