Mechanical behavior of annealed electrochemically deposited nanocrystalline nickel-iron alloys

Author:

Hoffmann Joachim E.1,Schmitt Martin-T.1,Eifler Dietmar1,Beck Tilmann1,Hielscher Torsten1,Eyrisch Tina1,Starke Peter1,Saumer Monika2,Klär Patrick2

Affiliation:

1. Kaiserslautern , Germany

2. Zweibrücken , Germany

Abstract

Abstract Nanocrystalline nickel-iron layers are produced electrochemically on copper discs by varying the current density and then annealed in a vacuum furnace at a temperature range between 200 and 800 °C. Grain size, iron content, texture and microstrain of the microstructure are primarily characterized by X-ray diffraction (XRD). Instrumented indentation tests and microbending tests for mechanical characterization are carried out. The iron contents of the investigated layers are 5.7, 8.8, 13.5 and 17.7 wt.-%. By varying the annealing temperature, the reduction of the microstrains is initiated at 200 °C and ends at a temperature of about 280 °C. Primary recrystallization starts slightly higher at 220 °C and is completed at 300 °C. With higher iron content, the indicated temperatures shift to slightly higher values. Indentation modulus, Young's modulus, indentation hardness and strength change considerably after the annealing treatment. Fracture strain at the edge, as a measure of ductility, decreases immediately after annealing at 200 °C to 0 %. Low annealing temperatures occurring before the beginning of primary recrystallization lead to an increase in indentation hardness and 0.01-% offset bending yield strength Rp0.01∗ as compared to the electrochemically deposited initial state. After annealing at high temperatures, the mechanical parameters are mostly below the initial values for electrochemical deposition. Hall-Petch (HP) behavior is observed for Rp0.01∗, both for the electrochemically deposited specimens down to almost 6 nm and for the specimens annealed at high temperatures. Specimens annealed at low temperatures deviate from the HP straight line to higher values. In this case, an increase in strength is assumed to be due to the very small nanocrystalline (nc) grain sizes, segregation at the grain boundaries and a decrease in dislocation density. Indentation hardness measurements show almost no dependence on D−0.5 for the electrochemically deposited specimens and also for annealed specimens below 30nm grain size. Above 30nm, the indentation hardness values are considerably higher than for the HP straight line. Overall, the hardness and strength values of the nc specimens, electrochemically deposited or additionally annealed, are significantly higher than those of the microcrystalline (mc) specimens.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3