Influence of nozzle temperature and volumetric filling on the mechanical properties of 3D-printed PEEK

Author:

Vogel Danny1,Weißmann Volker1,Rührmund Leo1,Hansmann Harald1,Bader Rainer1

Affiliation:

1. Biomechanics and Implant Technology, Research Laboratory, Department of Orthopaedics, Rostock University Medical Center Doberaner Straße 142, 18057 Rostock , Germany

Abstract

Abstract Fused deposition modeling is a layer-by-layer 3D printing technology used to additively manufacture polymers. A major benefit of 3D-printed polymers is the option of tailoring their mechanical properties by varying the process parameters. In addition, the present study investigates the influence of the filling degree (50 % or 100 %) and the nozzle temperature during manufacturing on the mechanical properties of 3D-printed poly-ether-ether-ketone (PEEK) material. PEEK samples were built either compact (filling degree 100 %) or closed-cell porous (filling degree 50 %), using three different nozzle temperatures (390 °C, 430 °C and 470 °C). In static bending tests, the bending properties were evaluated and compared with injection molded PEEK samples. Bending strength and modulus increased up to 21.1 %, when the nozzle temperature was increased and up to 40.8 % when the volumetric filling was altered. The results indicate that nozzle temperature and volumetric filling can be altered to tailor the bending properties of 3D-printed PEEK for particular applications. However, the mechanical properties of the 3D-printed samples determined in the current study could not achieve those of the properties of the injection molded PEEK.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3