Parameter Bias from Unobserved Effects in the Multinomial Logit Model of Consumer Choice

Author:

Abramson Charles1,Andrews Rick L.2,Currim Imran S.3,Jones Morgan4

Affiliation:

1. A lecturer, College of Business Administration, California State University, Long Beach

2. An associate professor, Department of Business Administration, University of Delaware

3. Corporate Partners Research Scholar and a professor, Graduate School of Management, University of California, Irvine

4. Associate Professor of Operations, Kenan-Flagler School of Business, University of North Carolina at Chapel Hill

Abstract

Over the past two decades, validation of choice models has focused on predictive validity rather than parameter bias. In real-world validation of choice models, true parameter values are unknown, so examination of parameter bias is not possible. In contrast, the main focus of this study is parameter bias in simulated scanner-panel choice data with known parameter values. Study of parameter bias enables the assessment of a fundamental issue not addressed in the choice modeling literature—the extent to which the logit choice model is capable of distinguishing unobserved effects that give rise to persistence in observed choices (e.g., heterogeneity and state dependence). Although econometric theory provides some information about the causes of bias, the extent of such bias in typical scanner data applications remains unclear. The authors present an extensive simulation study that provides information on the extent of bias resulting from the misspecification of four unobserved effects that receive frequent attention in the literature—choice set effects, heterogeneity in preferences and market response, state dependence, and serial correlation. The authors outline implications for model builders and managers. In general, the potential for parameter bias in choice model applications appears to be high. Overall, a logit model with choice set effects and the Guadagni–Little loyalty variable produces the most valid parameter estimates.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3