The biochemical assessment of insulin resistance

Author:

Borai Anwar1,Livingstone Callum2,Ferns Gordon A A1

Affiliation:

1. Centre for Clinical Science and Measurement, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK

2. Centre for Clinical Science and Measurement, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK; SAS Peptide Hormone Section, Clinical Biochemistry Department, Royal Surrey County Hospital NHS Trust, Guildford, Surrey GU2 7XX, UK

Abstract

Insulin resistance is a common condition, recognized to be a central feature of the metabolic syndrome, and strongly associated with an increased risk of cardiovascular disease and diabetes. The quantitative assessment of insulin sensitivity is not used for routine clinical purposes, but the emerging importance of insulin resistance has led to its wider application to research studies that have examined its pathogenesis, aetiology and consequences. The gold standard method for the determination of insulin sensitivity is the euglycaemic hyperinsulinaemic clamp from which indices of insulin sensitivity can be derived. The clamp technique is both expensive and complex to undertake and has prompted the use of surrogate methods, notably the insulin tolerance test and frequently sampled intravenous glucose tolerance test. Indices may be derived from these methods and correlate well with those derived from clamp studies. Indices can also be derived from measurements made during a standard oral glucose tolerance test and from one-off fasting specimens (e.g. homeostasis model assessment and quantitative insulin sensitivity check index). These indices lend themselves for use in large population studies where a relatively simple, inexpensive assessment is necessary. However, these tests all suffer from important limitations, including poor precision. Insulin resistance is increasingly being assessed in clinical situations, where relatively simple markers are required. Insulin-like growth factor binding protein-1 is an emerging marker which may be useful in this context.

Publisher

SAGE Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3