Contact by melanoma cells causes malignant transformation of human epithelial-like stem cells via alpha V integrin activation of transforming growth factor β1 signaling

Author:

Sun Hongyu12,Hu Kaimeng1,Wu Minjuan1,Xiong Jun1,Yuan Li3,Tang Ying4,Yang Yongji4,Liu Houqi1

Affiliation:

1. Research Center of Developmental Biology and Department of Histology and Embryology, Second Military Medical University, Shanghai 200433

2. Department of Clinical Laboratory, The No. 60 Hospital of PLA, Dali, Yunnan Province 671003

3. Department of Nephrology, Changzheng Hospital, Second Military Medical University

4. Department of Mathematics, Second Military Medical University, Shanghai 200433, P.R. China

Abstract

The embryonic microenvironment is known to suppress the tumorigenic phenotype of aggressive cancer cells; however, the effects of tumorigenic microenvironments on stem cells have not been sufficiently explored due to the lack of suitable model systems. In order to study the tumorigenic microenviornment, we developed a novel in vitro model system for induction of malignant transformation of human epithelial-like stem cells (hEpSCs), involving co-cultivation and close contact of hEpSCs with the A375 melanoma cell line, together with mutagen treatment of hEpSCs with dimethylbenzanthracene (DMBA). Both factors (close contact and mutagen treatment) were required to transform hEpSCs in vitro and cause phenotypic changes characteristic of epithelial to mesenchymal transition (EMT), including colony formation, decreased E-cadherin and increased N-cadherin and vimentin expression. Direct contact between tumor cells and hEpSCs treated with DMBA increased integrin alpha V (ITGAV gene) expression and caused local activation of the transforming growth factor (TGF)-β1/Smad signaling pathways in hEpSCs. The novel model system described here is being used to elucidate the microenvironmental factors and biological mechanisms involved in the induction of neoplastic progression in hEpSCs in vitro by A375 melanoma cells. A better understanding of the molecular mechanisms by which melanoma cells exert these effects on hEpSCs may open up new avenues for therapeutic and preventive cancer interventions.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3