Atorvastatin improving renal ischemia reperfusion injury via direct inhibition of active caspase-3 in rats

Author:

Haylor John L1,Harris Kevin P G2,Nicholson Michael L2,Waller Helen L2,Huang Qiang2,Yang Bin23

Affiliation:

1. Academic Nephrology Unit, University of Sheffield, Sheffield

2. Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK

3. Department of Nephrology, University of Nantong, Nantong, Jiangsu, PR China

Abstract

Caspase-3 is a key molecule involved in the inflammation and apoptosis of ischemia reperfusion (IR) injury. Statins are known to inhibit IR injury, but the mechanism of action remains uncertain. In the present study, the effect and underlying mechanism of ischemia alone, and reperfusion with or without atorvastatin (AT) as a timed intervention were examined, since clinically the kidney is only exposed to drug delivery during reperfusion. Male Sprague‐Dawley rats were subjected to 45‐min clamping of the left renal hilus followed by four hours reperfusion with a right nephrectomy. AT 10 mg/kg was intravenously administered after clamping the renal hilus, but prior to kidney reperfusion. Ischemia alone did cause tubulointerstitial damage (TID), protein carbonylation and caspase-3 activation with an increase in 12 kDa subunit, while reperfusion further enhanced TID, monocyte (ED-1+ cell) infiltration, apoptosis and necrosis together with caspase-3 activity and 17 kDa subunit, but reversed protein carbonylation. AT significantly reduced TID (26%), ED-1+ cell infiltration (74%), tubular apoptosis (47%) and necrosis (73%), and interstitial apoptosis (64%), as well as caspase-3 activity (26%), but did not change serum creatinine and cholesterol. Importantly, without affecting either caspase-3 active protein cleavage or S-nitrosylation, AT directly inhibited caspase-3 active enzyme in a dose-dependent manner in vitro. In conclusions, IR and AT exerted opposing effects on caspase-3 activity by differing mechanisms, with IR stimulating caspase-3 proteolytic cleavage and AT inhibiting active caspase-3 enzyme. This new inhibitory mechanism of AT may improve reperfusion tolerance in ischemic kidneys and benefit transplant recipients.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3