Predicción de la calidad en revestimientos moldeados para puertas mediante el uso de minería de datos

Author:

Troncoso-Espinosa Fredy Humberto,Castro-Albornoz Karen

Abstract

Un revestimiento moldeado para puertas es un tablero de madera de alta densidad que es utilizado como el principal componente en la fabricación de puertas.  Para asegurar su comercialización, se debe cumplir con exigentes normas de calidad, siendo la principal norma aquella que mide la fuerza necesaria para desprender el revestimiento de la estructura de una puerta. Los ensayos de calidad son realizados cada dos horas y sus resultados son obtenidos luego de aproximadamente cinco horas. Si los resultados muestran que los revestimientos están fuera del estándar de calidad exigido, se generan pérdidas económicas debido a este tiempo de espera. Esta investigación propone el uso de minería de datos mediante técnicas de machine learning para predecir en forma continua esta medida de calidad y reducir las pérdidas económicas asociadas a la espera de los resultados. Para la aplicación de minería de datos, se creó una base de datos en base al registro histórico de las variables del proceso productivo y de los ensayos de calidad. La metodología empleada es el descubrimiento de conocimiento en bases de datos KDD (Knowledge Discovery in Databases). La aplicación de esta metodología permitió identificar las principales variables que afectan la calidad de los revestimientos y entrenar cuatro algoritmos de machine learning para predecir su calidad. Los resultados muestran que el algoritmo que mejor predice la calidad es Neural Net y permiten demostrar que la implementación del algoritmo Neural Net reducirá las pérdidas económicas asociadas a la espera de los resultados de los ensayos de calidad.

Publisher

Instituto Tecnologico de Costa Rica

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3