Author:
Tran Huu Danh ,Nguyen Dinh Ngoc ,Nguyen Thi Thanh Nga ,Vu Ngoc Pi ,Nguyen Ngoc Thieu
Abstract
A lift table is a very common device in industry. To lift goods or people, this device employs a scissors mechanism. There are numerous designs for the scissors mechanism. Each schema will produce a different set of output responses when given the same set of input parameters. As a result, determining the best scheme is critical when designing an optimal lift table. The results of a study that used the multi-criteria decision making (MCDM) technique to determine the best scheme for designing a lift table to meet two criteria at the same time: minimum lifting time and maximum lifting force are presented in this paper. To achieve this, nine different scissor lifting mechanism diagrams were analyzed using the Multi-Objective Optimization Ratio Analysis (MOORA) method to solve the MCDM problem and the Method based on the Removal Effects of Criteria (MEREC) to calculate the weights of criteria. Finally, the most effective lift table design scheme has been suggested.
Publisher
Academy of Military Science and Technology
Reference11 articles.
1. [1]. Doçi, I., et al., "Scissor lift dynamic analysis and motion regulation for the case of lifting with maximum load". Trans Motauto World. 6(2): p. 38-42, (2021).
2. [2]. Hongyu, T. and Z. Ziyi, "Design and simulation based on Pro/E for a hydraulic lift platform in scissors type". Procedia Engineering. 16: p. 772-781, (2011).
3. [3]. Arunkumar, G., R. Kartheeshwaran, and J. Siva. "Investigation on design, analysis and topological optimization of hydraulic scissor lift". in Journal of Physics: Conference Series. IOP Publishing, (2021).
4. [4]. Islam, M.T., et al. "Dynamic analysis of scissor lift mechanism through bond graph modeling". in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
5. [5]. Liu, T. and J. Sun. "Simulative calculation and optimal design of scissor lifting mechanism". in 2009 Chinese Control and Decision Conference.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献