Author:
Dang Thanh Trung,Nguyen Phan Kien,Chu Duc Hoang ,Nguyen Thanh Trung
Abstract
Several investigations contributed to developing the Electrical Resistivity Spectroscopy equipment used to evaluate meat standards. In the prior research, a method for effectively calculating the power resistance spectra of pork meat was devised. This method was successfully implemented. Electrodes fabricated from medical knitting needles and the term means syringes were used in this study to measure the energy-dispersive spectra of flesh. These two different transducers were constructed for the investigation and employed in the measurement process. In medicine, both types of electrodes are utilized; however, assessment findings acquired using the same equipment reveal a distinct disparity between the outcomes of the two measurements. This demonstrates that selecting an electrode for a specific measurement requires careful consideration and consideration overall. In the coming years, the investigation and advancement of weighing electrodes, which are utilized to assess the electronic input resistance of pork meat and over which the research group is concentrating, are further investigated to develop the measurement system electrodes the most appropriate and essential. Using data from knowledge grows.
Publisher
Academy of Military Science and Technology
Reference21 articles.
1. [1]. M.D.OToole, L.A.Marsh, J.L.Davidson, Y.M.Tan, D.W.Armitage, and A. J. Peyton, “Rapid Non-Contact Relative Permittivity Measurement of Fruits and Vegetables using Magnetic Induction Spectroscopy,” Sensors Applications Symposium (SAS), 2015 IEEE, pp. 1 - 6, (2015).
2. [2]. G.H Geesink, F.H Schreutelkamp, R Frankhuizen, H.W Vedder, N.M Faber, R.W Kranen, and M.A Gerritzen, “Prediction of pork quality attributes from near infrared reflectance spectra,” Meat Science, vol. 65, no. 1, pp. 661 - 668, (2003).
3. [3]. K.Cluff, G.K.Naganathan, J.Subbiah, R.Lu, C.R.Calkins, A.Samal, “Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region,” Sensing and Instrumentation for Food Quality and Safety, vol. 2, no. 3, pp. 189 - 196, (2008).
4. [4]. J. L. Damez, S. Clerjon, “Modelling the electrical properties of meat mesostructure during aging,” 53rd International Congress of Meat Science and Technology, pp. 215 - 216, (2007).
5. [5]. S.Clerjon, J.L.Damez, “Microwave sensing for an objective evaluation of meat ageing,” Journal of Food Engineering, vol. 94, no. 3-4, pp. 379 - 389, (2009).