A STUDY ON THE FREQUENCY RESPONSE OF A COMPOSITE PRE-STRESSED SYSTEM UNDER AN INCLINED HARMONIC LOADING

Author:

DAŞDEMİR Ahmet1ORCID

Affiliation:

1. kastamonu üniversitesi

Abstract

Goal for the present research is investigating the dynamic behaviors regarding forced vibration of an elastic composite body on the rigid ground for four different material designations. For this purpose, the effects of the initial stress state and frequency response parameter on the forced vibration of the model are studied. Based on the linearized theory of elasticity, the nonlinear forced vibration of composite material on the rigid ground is considered. The nonlinear governing equations are linearized and boundary-contact conditions are derived using Hamilton’s principle. Total energy functional is constructed based on the principle of the variational formulation, and then the forced vibration of elastic composite plate-strip is analyzed using the finite element method (FEM). Moreover, the numerical examples related to the influences of important problem factors on our mathematical model are given. The observations show that the selection of more soft material in the upper layers has a great potential for the structural stability of the system. For the softer upper layer relatively, the wave oscillation in the plate-strip exhibits becomes more regular. In addition, the resonance values of the system decrease with the increase of the initial compressing parameter but with the initial stretching parameter.

Publisher

Amasya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3