In-flight corrections in free-flying barn owls (Tyto alba)during sound localization tasks

Author:

Hausmann Laura1,Plachta Dennis T. T.1,Singheiser Martin1,Brill Sandra1,Wagner Hermann1

Affiliation:

1. Institute of Biology II, RWTH Aachen, Kopernikusstraße 16, 52074 Aachen, Germany

Abstract

SUMMARY Barn owls localize a stationary auditory target with high accuracy. They might also be able to hit a target that is intermittently moving while the owl is approaching. If so, there should be a critical delay before strike initiation, up to which the owl can adapt its flight path to a new stimulus position. In this study, this critical stimulus delay was determined in a three-dimensional free-flight paradigm. Barn owls localized a pulsed broadband noise while sitting on a perch in total darkness. This initial signal stopped with the owl's take-off and an in-flight stimulus (target sound), lasting 200 ms, was introduced at variable time delays (300–1200 ms) during the approximate flight time of 1300 ms. The owls responded to the in-flight signal with a corrective head and body turn. The percentage of trials in which correction turns occurred (40–80%) depended upon the individual bird,but was independent of the stimulus delay within a range of 800 ms after take-off. Correction turns strongly decreased at delays ≥800 ms. The landing precision of the owls, defined as their distance to the in-flight speaker, did not decrease with increasing stimulus delay, but decreased if the owl failed to perform a correction turn towards that speaker. Landing precision was higher for a short (50 cm) than for a large (100 cm) distance between the initial and the new target. Thus, the ability of barn owls to adapt their flight path to a new sound target depends on the in-flight stimulus delay, as well as on the distance between initial and novel targets.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multisensory processes in birds: From single neurons to the influence of social interactions and sensory loss;Neuroscience & Biobehavioral Reviews;2022-12

2. Great Gray Owls hunting voles under snow hover to defeat an acoustic mirage;Proceedings of the Royal Society B: Biological Sciences;2022-11-23

3. Der Alltag: Jagen, Fressen, Schlafen;Schleiereulen;2022

4. Ökophysiologie;Schleiereulen;2022

5. Bird wings act as a suspension system that rejects gusts;Proceedings of the Royal Society B: Biological Sciences;2020-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3