Effects of prolonged anoxia on electrical activity of the heart in Crucian carp (Carassius carassius)

Author:

Tikkanen Elisa1,Haverinen Jaakko1,Egginton Stuart2,Hassinen Minna1,Vornanen Matti1ORCID

Affiliation:

1. University of Eastern Finland, Department of Environmental and Biological Sciences, Finland

2. University of Leeds, Faculty of Biological Sciences, UK

Abstract

The effects of sustained anoxia on cardiac electrical excitability were examined in the anoxia-tolerant Crucian carp (Carassius carassius). The electrocardiogram (ECG) and expression of excitation-contraction coupling genes were studied in fish acclimatised to normoxia in summer (+18°C) or winter (+2°C), and in winter fish after 1, 3 and 6 weeks of anoxia. Anoxia induced a sustained bradycardia from a heart rate of 10.3±0.77 to 4.1±0.29 bpm (P<0.05) after 5 weeks, and heart rate slowly recovered to control levels when oxygen was restored. Heart rate variability greatly increased under anoxia, and completely recovered under re-oxygenation. The RT interval increased from 2.8±0.34 s in normoxia to 5.8±0.44 s under anoxia (P<0.05), which reflects a doubling of the ventricular action potential (AP) duration. Acclimatisation to winter induced extensive changes in gene expression relative to summer-acclimatised fish, including depression in those coding for the sarcoplasmic reticulum calcium pump (Serca2-q2) and ATP-sensitive K+ channels (Kir6.2) (P<0.05). Genes of delayed rectifier K+ (kcnh6) and Ca2+ channels (cacna1c) were up-regulated in winter fish (P<0.05). In contrast, the additional challenge of anoxia caused only minor changes in gene expression, e.g. depressed expression of Kir2.2b K+ channel gene (kcnj12b), whereas expression of Ca2+ (cacna1a, -c and –g) and Na+ channel genes (scn4a and scn5a) were not affected. These data suggest that low temperature pre-conditions the Crucian carp heart for winter anoxia, whereas sustained anoxic bradycardia and prolongation of AP duration are directly induced by oxygen shortage without major changes in gene expression.

Funder

Suomen Akatemia

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3