Transpiration Through the Cuticle of Insects

Author:

WIGGLESWORTH V. B.1

Affiliation:

1. Agricultural Research Council Unit of Insect Physiology, London School of Hygiene and Tropical Medicine

Abstract

Transpiration through the cuticle of insects is restricted by a thin layer of orientated wax on the outer surface of the epicuticle. In some insects at least this wax layer is covered by a thin layer of cement. When heated to a certain temperature the wax layer shows an abrupt increase in permeability to water. This ‘critical temperature’ varies widely in different species and in different stages of the same species. It is highest in those insects which are most resistant to desiccation. In the newly formed puparium of Calliphora the impermeable film of wax is wholly superficial as in other insects. But after pupation the main impermeable layer is on the surface of the true pupa. The critical temperature of the pupa is much higher than that of the puparium. Abrasion of the wax layer results in a great increase in transpiration through the cuticle. Inert dusts cause the desiccation of insects by getting between the moving surfaces of the cuticle and abrading the wax layer. Such dusts in stationary contact with the cuticle will not remove the wax by adsorption; hence they are without action on dead or motionless insects. (The cockroach is an exception to this. Here the water proof layer is a soft grease, freely exposed on the surface; it is largely removed by adsorption on to the dusts.) The places where the wax has been abraded can be demonstrated by immersing the insect in ammoniacal silver solution. The phenol-containing epicuticle stains deep brown only where the protective layer of wax has been removed. Although the epicuticle shows no visible injury as the result of abrasion, the underlying cells react as though they had been wounded, and growth processes in the epidermis are affected. Insect larvae from the soil show great but variable evaporation of water. This is the result of abrasion of the cuticle by soil particles. If the wireworm Agriotes is allowed to moult out of contact with the soil it has an impermeable cuticle like other insects. After abrasion the living insect is able to secrete more wax through the substance of the cuticle and so to restore its impermeability. Adsorption of the wax by dusts while it is being secreted interferes with this process of recovery. Lipoid solvents remove the wax layer from the surface and so increase transpiration. A long series of wetting agents and detergents has been tested. They show widely different effects on permeability of the cuticle to water. Removal of the wax layer by means of abrasive dusts or suitable detergents increases the rate of entry of insecticides through the cuticle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3