The G-protein-coupled receptor Gpr161 regulates forelimb formation, limb patterning and skeletal morphogenesis in a primary cilium-dependent manner

Author:

Hwang Sun-hee1,White Kevin A.2,Somatilaka Bandarigoda Nipunika1,Shelton John M.2,Richardson James A.3,Mukhopadhyay Saikat1ORCID

Affiliation:

1. Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA

2. Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA

3. Department of Pathology UT Southwestern Medical Center, Dallas, Texas, USA

Abstract

The role of basal suppression of Sonic hedgehog (Shh) pathway and its interaction with Indian hedgehog (Ihh) signaling during limb/skeletal morphogenesis is not well understood. The orphan G-protein-coupled receptor, Gpr161 localizes to primary cilia, and functions as a negative regulator of Shh signaling by promoting Gli transcriptional repressor versus activator formation. Here, we show that forelimb buds are not formed in Gpr161 knockout mice embryos despite establishment of prospective limb fields. Limb-specific deletion of Gpr161 resulted in prematurely expanded Shh signaling and ectopic Shh-dependent patterning defects to cause polysyndactyly. In addition, endochondral bone formation in forearms, including formation of both trabecular bone and bone collar was prevented. Endochondral bone formation defects resulted from accumulation of proliferating round/periarticular-like chondrocytes, lack of differentiation into columnar chondrocytes, and corresponding absence of Ihh signaling. Gpr161 deficiency in craniofacial mesenchyme also prevented intramembranous bone formation in calvarium. Defects in limb patterning, endochondral and intramembranous skeletal morphogenesis were suppressed in the absence of cilia. Overall, Gpr161 promotes forelimb formation, regulates limb patterning, prevents periarticular chondrocyte proliferation, and drives osteoblastogenesis in intramembranous bones in a cilium-dependent manner.

Funder

National Institutes of Health

Cancer Prevention and Research Institute of Texas

Welch Foundation

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3