No strings attached: the ESCRT machinery in viral budding and cytokinesis

Author:

McDonald Bethan1,Martin-Serrano Juan1

Affiliation:

1. Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK

Abstract

Since the initial discovery of the endosomal sorting complex required for transport (ESCRT) pathway, research in this field has exploded. ESCRT proteins are part of the endosomal trafficking system and play a crucial role in the biogenesis of multivesicular bodies by functioning in the formation of vesicles that bud away from the cytoplasm. Subsequently, a surprising role for ESCRT proteins was defined in the budding step of some enveloped retroviruses, including HIV-1. ESCRT proteins are also employed in this outward budding process, which results in the resolution of a membranous tether between the host cell and the budding virus particle. Remarkably, it has recently been described that ESCRT proteins also have a role in the topologically equivalent process of cell division. In the same way that viral particles recruit the ESCRT proteins to the site of viral budding, ESCRT proteins are also recruited to the midbody – the site of release of daughter cell from mother cell during cytokinesis. In this Commentary, we describe recent advances in the understanding of ESCRT proteins and how they act to mediate these diverse processes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3