Differential reaction norms to ocean acidification in two oyster species from contrasting habitats

Author:

Caillon Coline1ORCID,Pernet Fabrice1ORCID,Lutier Mathieu12ORCID,Di Poi Carole1ORCID

Affiliation:

1. Ifremer, Univ Brest, CNRS, IRD, UMR 6539 LEMAR 1 , 29280 Plouzané , France

2. University of Oslo 2 Section for Aquatic Biology and Toxicology, Department of Biosciences , , Blindernveien 31, 0371 Oslo , Norway

Abstract

ABSTRACT Ocean acidification (OA), a consequence of the increase in anthropogenic emissions of carbon dioxide, causes major changes in the chemistry of carbonates in the ocean with deleterious effects on calcifying organisms. The pH/PCO2 range to which species are exposed in nature is important to consider when interpreting the response of coastal organisms to OA. In this context, emerging approaches, which assess the reaction norms of organisms to a wide pH gradient, are improving our understanding of tolerance thresholds and acclimation potential to OA. In this study, we deciphered the reaction norms of two oyster species living in contrasting habitats: the intertidal oyster Crassostrea gigas and the subtidal flat oyster Ostrea edulis, which are two economically and ecologically valuable species in temperate ecosystems. Six-month-old oysters of each species were exposed in common garden tanks for 48 days to a pH gradient ranging from 7.7 to 6.4 (total scale). Both species were tolerant down to a pH of 6.6 with high plasticity in fitness-related traits such as survival and growth. However, oysters underwent remodelling of membrane fatty acids to cope with decreasing pH along with shell bleaching impairing shell integrity and consequently animal fitness. Finally, our work revealed species-specific physiological responses and highlights that intertidal C. gigas seem to have a better acclimation potential to rapid and extreme OA changes than O. edulis. Overall, our study provides important data about the phenotypic plasticity and its limits in two oyster species, which is essential for assessing the challenges posed to marine organisms by OA.

Funder

Fondation pour la Recherche sur la Biodiversite

French Ministère de l'Ecologie, du Développement Durable et de l'Energie

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3