The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga

Author:

Boller Michael L.1,Carrington Emily1

Affiliation:

1. Department of Biological Sciences, University of Rhode Island,Kingston, RI 02881, USA

Abstract

SUMMARYRocky intertidal organisms experience large hydrodynamic forces due to high water velocities created by breaking waves. Flexible organisms, like macroalgae, often experience lower drag than rigid organisms because their shape and size change as velocity increases. This phenomenon, known as reconfiguration, has been previously quantified as Vogel's E, a measure of the relationship between velocity and drag. While this method is very useful for comparing reconfiguration among organisms it does not address the mechanisms of reconfiguration, and its application to predicting drag is problematic. The purpose of this study was twofold: (1) to examine the mechanisms of reconfiguration by quantifying the change in shape and size of a macroalga in flow and (2) to build a mechanistic model of drag for reconfiguring organisms. Drag, frontal area and shape of the intertidal alga Chondrus crispus were measured simultaneously in a recirculating flume at water velocities from 0 to ∼2 m s–1. Reconfiguration was due to two separate mechanisms: whole-alga realignment(deflection of the stipe) at low velocities (<0.2 m s–1)and compaction of the crown (reduction in frontal area and change in shape) at higher velocities. Change in frontal area contributed more to drag reduction than change in drag coefficient. Drag coefficient and frontal area both decrease exponentially with increasing water velocity, and a mechanistic model of drag was developed with explicit functions to describe these changes. The model not only provides mechanistic parameters with which to compare reconfiguration among individuals and species, but also allows for more reliable predictions of drag at high, ecologically relevant water velocities.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3