Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation

Author:

Piotrowski T.1,Schilling T.F.1,Brand M.1,Jiang Y.J.1,Heisenberg C.P.1,Beuchle D.1,Grandel H.1,van Eeden F.J.1,Furutani-Seiki M.1,Granato M.1,Haffter P.1,Hammerschmidt M.1,Kane D.A.1,Kelsh R.N.1,Mullins M.C.1,Odenthal J.1,Warga R.M.1,Nusslein-Volhard C.1

Affiliation:

1. Max-Planck-Institut fur Entwicklungsbiologie, Abteilung Genetik, Tubingen, Germany. tapi@fserv1.mpib-tuebingen.mpg.de

Abstract

In a large scale screen for mutants that affect the early development of the zebrafish, 109 mutants were found that cause defects in the formation of the jaw and the more posterior pharyngeal arches. Here we present the phenotypic description and results of the complementation analysis of mutants belonging to two major classes: (1) mutants with defects in the mandibular and hyoid arches and (2) mutants with defects in cartilage differentiation and growth in all arches. Mutations in four of the genes identified during the screen show specific defects in the first two arches and leave the more posterior pharyngeal arches largely unaffected (schmerle, sucker, hoover and sturgeon). In these mutants ventral components of the mandibular and hyoid arches are reduced (Meckel's cartilage and ceratohyal cartilage) whereas dorsal structures (palatoquadrate and hyosymplectic cartilages) are of normal size or enlarged. Thus, mutations in single genes cause defects in the formation of first and second arch structures but also differentially affect development of the dorsal and ventral structures within one arch. In 27 mutants that define at least 8 genes, the differentiation of cartilage and growth is affected. In hammerhead mutants particularly the mesodermally derived cartilages are reduced, whereas jellyfish mutant larvae are characterized by a severe reduction of all cartilaginous elements, leaving only two pieces in the position of the ceratohyal cartilages. In all other mutant larvae all skeletal elements are present, but consist of smaller and disorganized chondrocytes. These mutants also exhibit shortened heads and reduced pectoral fins. In homozygous knorrig embryos, tumor-like outgrowths of chondrocytes occur along the edges of all cartilaginous elements. The mutants presented here may be valuable tools for elucidating the genetic mechanisms that underlie the development of the mandibular and the hyoid arches, as well as the process of cartilage differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3