Apoptosis - the p53 network

Author:

Haupt Susan1,Berger Michael2,Goldberg Zehavit2,Haupt Ygal2

Affiliation:

1. Department of Pharmacy, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel

2. Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel

Abstract

Exposure to cellular stress can trigger the p53 tumor suppressor, a sequence-specific transcription factor, to induce cell growth arrest or apoptosis. The choice between these cellular responses is influenced by many factors, including the type of cell and stress, and the action of p53 co-activators. p53 stimulates a wide network of signals that act through two major apoptotic pathways. The extrinsic, death receptor pathway triggers the activation of a caspase cascade, and the intrinsic, mitochondrial pathway shifts the balance in the Bcl-2 family towards the pro-apoptotic members, promoting the formation of the apoptosome, and consequently caspase-mediated apoptosis. The impact of these two apoptotic pathways may be enhanced when they converge through Bid, which is a p53 target. The majority of these apoptotic effects are mediated through the induction of specific apoptotic target genes. However, p53 can also promote apoptosis by a transcription-independent mechanism under certain conditions. Thus, a multitude of mechanisms are employed by p53 to ensure efficient induction of apoptosis in a stage-, tissue- and stress-signal-specific manner. Manipulation of the apoptotic functions of p53 constitutes an attractive target for cancer therapy.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference92 articles.

1. Abarzua, P., LoSardo, J. E., Gubler, M. L., Spathis, R., Lu, Y. A., Felix, A. and Neri, A. (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene13, 2477-2482.

2. Adams, J. M. and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science281, 1322-1326.

3. Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol.14, 715-720.

4. Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science281, 1305-1308.

5. Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W. and Jacks, T. (2000). PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev.14, 704-718.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3