Do aquatic ectotherms perform better under hypoxia after warm acclimation?

Author:

Collins Michael1ORCID,Truebano Manuela1,Verberk Wilco C. E. P.2,Spicer John I.1

Affiliation:

1. Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK

2. Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GLNijmegen, The Netherlands

Abstract

ABSTRACT Aquatic animals increasingly encounter environmental hypoxia due to climate-related warming and/or eutrophication. Although acute warming typically reduces performance under hypoxia, the ability of organisms to modulate hypoxic performance via thermal acclimation is less understood. Here, we review the literature and ask whether hypoxic performance of aquatic ectotherms improves following warm acclimation. Interpretation of thermal acclimation effects is limited by reliance on data from experiments that are not designed to directly test for beneficial or detrimental effects on hypoxic performance. Most studies have tested hypoxic responses exclusively at test temperatures matching organisms' acclimation temperatures, precluding the possibility of distinguishing between acclimation and acute thermal effects. Only a few studies have applied appropriate methodology to identify beneficial thermal acclimation effects on hypoxic performance, i.e. acclimation to different temperatures prior to determining hypoxic responses at standardised test temperatures. These studies reveal that acute warming predominantly impairs hypoxic performance, whereas warm acclimation tends to be either beneficial or have no effect. If this generalises, we predict that warm-acclimated individuals in some species should outperform non-acclimated individuals under hypoxia. However, acclimation seems to only partially offset acute warming effects; therefore, aquatic ectotherms will probably display overall reduced hypoxic performance in the long term. Drawing on the appropriate methodology, future studies can quantify the ability of organisms to modulate hypoxic performance via (reversible) thermal acclimation and unravel the underlying mechanisms. Testing whether developmental acclimation and multigenerational effects allow for a more complete compensation is essential to allow us to predict species' resilience to chronically warmer, hypoxic environments.

Funder

School of Biological and Marine Sciences, University of Plymouth

Netherlands Organisation for Scientific Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3