Neuro-Muscular Control of Dipteran Flight

Author:

NACHTIGALL WERNER1,WILSON DONALD M.2

Affiliation:

1. Departments of Molecular Biology and Zoology, University of California, Berkeley; Present address: Zoologisches Institut der Universität, 8 München 2, Luisenstr. 14, Germany

2. Departments of Molecular Biology and Zoology, University of California, Berkeley; Address after July 1967: Department of Biological Sciences, Stanford University, Palo Alto, California

Abstract

1. Electrical activity from the indirect, myogenic muscles of calliphorid flies was recorded during flight. The animals were suspended from an aerodynamic balance in the laminar air-stream from a wind-tunnel. Muscle action potentials, recorded with 25µ wire, were 5-7 msec. in duration, up to 10mV. in amplitude and positive in sign. Frequencies were mostly under 20/sec. 2. Frequencies in all the indirect muscles were similar, but these varied together with changes in aerodynamic power. 3. Frequencies in the indirect muscles of the two sides varied by no more than ± 10% during extreme turns to right or left (only left or only right wing beating). 4. Electrical records from the non-myogenic direct muscles were made during tethered flight. The potentials were 2-4 msec. in duration, up to 2 mV. positive and had frequencies up to 180/sec. 5. A nearly linear positive correlation exists between impulse frequency in the musculus latus (pleurosternal muscle), the inward movement of the pleural wall, and the wingbeat frequency, suggesting that this muscle is the basic frequency determiner. 6. Strong turning behaviour is associated with opposed frequency changes in the pairs of antagonistic adductor and abductor muscles of the wings on the two sides of the body. 7. The musculus dorsoventralis IV (tergo-trochanteral) is activated by a short impulse burst at the beginning of flight. It apparently acts as an oscillation starter. 8. Flight initiation normally requires 30-60 msec. Usually activity begins in the musculus latus, which stiffens the thorax. Then simultaneously the myogenic muscles are activated and the ‘starter’ muscle causes a jump and the beginning of oscillation of the thorax. Then the wings are drawn gradually forward and full wingbeat amplitude develops within the first six wingbeats. Flight begins with maximal lift and wingbeat frequency and a nearly synchronous burst discharge in all the indirect muscles. 9. Power production and the transmission and distribution of power are under separate control. The myogenic indirect motor varies only in total power output, this being influenced by its own state of excitation and by a muscle-controlling wingbeat frequency. Steering is accomplished by non-myogenic direct muscles which are capable of differentially engaging the two wings with the motor.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3