A slow V̇O2 on-response allows to comfortably adopt aerobically unaffordable walking and running speeds in short stairs ascending

Author:

Minetti Alberto E.1ORCID,Rapuzzi Fabrizio1ORCID,Alberton Cristine Lima12,Pavei Gaspare1ORCID

Affiliation:

1. Department of Pathophysiology and Transplantation, Physiology Division, University of Milan, Italy

2. Department of Sports, Physical Education School, Federal University of Pelotas, Brazil

Abstract

The aim of this paper is to investigate the mechanical and metabolic reasons of the spontaneous gait/speed choice of ascending short flight of stairs, where walking on every step or running on every other step are frequently interchangeable options. Twenty-four subjects' kinematics, oxygen uptake (V̇O2), ventilation and heart rate were sampled during climbing one and two flights of stairs while using the two gaits. Although motor acts were very short in time (5-22 s), metabolic kinetics, extending in the successive 250 s after the end of climbing, consistently reflected the (equivalent of the) needed mechanical energy and allowed to compare the two ascent choices: despite a 250% higher mechanical power associated to running, measured V̇O2, ventilation and heart rate peaked only at +25% with respect to walking, and in both gaits at a much lower values than V̇O2max despite of predictions based on previous gradient locomotion studies. Mechanical work and metabolic cost of transport, as expected, showed similar increase (+25%) in running. For stairs up to 4.8 m tall (30 steps at 53% gradient), running makes us consuming slightly more calories than walking, and in both gaits at no discomfort at all. The cardio-respiratory-metabolic responses similarly delay and damp the replenishing of phosphocreatine stores, which were much faster depleted during the impulsive, highly powered mechanical event, with almost overlapping time courses. Such a discrepancy between mechanical and metabolic dynamics allows to afford almost-to-very anaerobic climbs and to interchangeably decide whether to walk or run up a short flight of stairs.

Funder

UniALA Project

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference24 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3