Pharmacological effects of cannabinoids on learning and memory in Lymnaea

Author:

Sunada Hiroshi12,Watanabe Takayuki3,Hatakeyama Dai2,Lee Sangmin1,Forest Jeremy1,Sakakibara Manabu4,Ito Etsuro25ORCID,Lukowiak Ken1

Affiliation:

1. Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1

2. Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan

3. Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan

4. School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan

5. Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan

Abstract

ABSTRACT Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaea stagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis. In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea. This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Japan Society for the Promotion of Science

Waseda University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3