Going wild: what a global small-animal tracking system could do for experimental biologists

Author:

Wikelski Martin1,Kays Roland W.2,Kasdin N. Jeremy3,Thorup Kasper4,Smith James A.5,Swenson George W.6

Affiliation:

1. Department of Ecology and Evolutionary Biology, Princeton University,Princeton, NJ 08544, USA

2. Mammal Lab, New York State Museum, CEC 3140, Albany, NY 12230,USA

3. Department of Mechanical and Aerospace Engineering, Princeton University,Princeton, NJ 08544, USA

4. Copenhagen Bird Ringing Centre, Zoological Museum, University of Copenhagen, DK-2100 Denmark

5. Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA

6. Department of Electrical and Computer Engineering and Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801,USA

Abstract

SUMMARY Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than ∼300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative(www.IcarusInitiative.org),the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the `Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics,extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. Alerstam, T. and Hedenström, A. (1998). Optimal migration. J. Avian Biol.29,339-340.

2. Bartholomew, G. A. (1986). The role of natural history in contemporary biology. Bioscience3, 324-329.

3. Bennett, P. M. and Owens, I. P. F. (2002). Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction. New York: Oxford University Press.

4. Berthold, P. (2001). Bird Migration:A General Survey. New York: Oxford University Press.

5. Block, B. A., Teo, S. L. H., Walli, A., Boustany, A.,Stokesbury, M. J. W., Farwell, C. J., Weng, K. C., Dewar, H. and Williams, T. D. (2005). Electronic tagging and population structure of Atlantic bluefin tuna. Nature434,1121-1127.

Cited by 237 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3