The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana

Author:

Vaddepalli Prasad1,Herrmann Anja1,Fulton Lynette1,Oelschner Maxi1,Hillmer Stefan2,Stratil Thomas F.3,Fastner Astrid4,Hammes Ulrich Z.4,Ott Thomas3,Robinson David G.2,Schneitz Kay1

Affiliation:

1. Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, Freising 85354, Germany

2. Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany

3. Institute of Genetics, Faculty of Biology, Ludwig-Maximilians-University of Munich, Grosshaderner Strasse 2-4, Martinsried 82152, Germany

4. Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany

Abstract

Tissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic. In Arabidopsis, signal transduction mediated by the receptor-like kinase STRUBBELIG (SUB) contributes to inter-cell layer signaling during tissue morphogenesis. Previous analysis has revealed that SUB acts non-cell-autonomously suggesting that SUB controls tissue morphogenesis by participating in the formation or propagation of a downstream mobile signal. A genetic screen identified QUIRKY (QKY), encoding a predicted membrane-anchored C2-domain protein, as a component of SUB signaling. Here, we provide further insight into the role of QKY in this process. We show that like SUB, QKY exhibits non-cell-autonomy when expressed in a tissue-specific manner and that non-autonomy of QKY extends across several cells. In addition, we report on localization studies indicating that QKY and SUB localize to PD but independently of each other. FRET-FLIM analysis suggests that SUB and QKY are in close contact at PD in vivo. We propose a model where SUB and QKY interact at PD to promote tissue morphogenesis, thereby linking RLK-dependent signal transduction and intercellular communication mediated by PD.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3