Brood size constrains the development of endothermy in blue tits

Author:

Andreasson Fredrik1ORCID,Nord Andreas1,Nilsson Jan-Åke1

Affiliation:

1. Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, Lund S-223 62, Sweden

Abstract

ABSTRACT Altricial birds are unable to maintain body temperature when exposed to low ambient temperatures during the first days after hatching. Thermoregulatory capacity begins to form as postnatal development progresses, and eventually nestlings become homeothermic. Several factors may influence this development at both the level of the individual and the level of the whole brood, but to our knowledge no studies have focused on the effect of brood size per se on the development of endothermy in individual nestlings. We performed cooling experiments on blue tit (Cyanistes caeruleus) nestlings in the field, to study how different experimental brood sizes affected the development of endothermy in individual nestlings and the thermal environment experienced by the whole brood in the nest. Nestlings from all experimental brood sizes showed a decrease in cooling rate as they grew older, but birds from reduced broods showed an earlier onset of endothermy compared with nestlings from enlarged and control broods. This difference manifested during early development and gradually disappeared as nestlings grew older. The thermal environment in the nests differed between treatments during nestling development, such that nest temperature in reduced broods was lower than that in enlarged broods during all days and during nights at the end of the experimental period. We suggest that the development of endothermy in blue tit nestlings is not ontogenetically fixed, but instead may vary according to differences in developmental, nutritional and thermal conditions as determined by brood size.

Funder

Swedish Research Council

Vetenskapsrådet

Helge Ax:son Johnson Foundation

Stiftelsen Lunds Djurskyddsfond

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. Ontogeny of avian thermoregulation from a neural point of view;Baarendse;World. Poultry Sci. J.,2007

2. Thermal benefit of sibling presence in the newborn rabbit;Bautista;Dev. Psychobiol.,2003

3. Physiology of temperature regulation: comparative aspects;Bicego;Comp. Biochem. Physiol. A Mol. Integr. Physiol.,2007

4. Development of homeothermy in hatchling crowned plovers Vanellus coronatus;Brown;J. Therm. Biol.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3