Modeling neurodegeneration in Caenorhabditis elegans

Author:

Caldwell Kim A.12ORCID,Willicott Corey W.1,Caldwell Guy A.12ORCID

Affiliation:

1. Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA

2. Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Abstract

ABSTRACT The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3