Specification of Drosophila motoneuron identity by the combinatorial action of POU and LIM-HD factors

Author:

Certel Sarah J.1,Thor Stefan1

Affiliation:

1. Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue,Boston, MA 02115, USA

Abstract

In both vertebrates and invertebrates, members of the LIM-homeodomain(LIM-HD) family of transcription factors act in combinatorial codes to specify motoneuron subclass identities. In the developing Drosophila embryo,the LIM-HD factors Islet (Tailup) and Lim3, specify the set of motoneuron subclasses that innervate ventral muscle targets. However, as several subclasses express both Islet and Lim3, this combinatorial code alone cannot explain how these motoneuron groups are further differentiated. To identify additional factors that may act to refine this LIM-HD code, we have analyzed the expression of POU genes in the Drosophila embryonic nerve cord. We find that the class III POU protein, Drifter (Ventral veinless), is co-expressed with Islet and Lim3 specifically in the ISNb motoneuron subclass. Loss-of-function and misexpression studies demonstrate that the LIM-HD combinatorial code requires Drifter to confer target specificity between the ISNb and TN motoneuron subclasses. To begin to elucidate molecules downstream of the LIM-HD code, we examined the involvement of the Beaten path (Beat)family of immunoglobulin-containing cell-adhesion molecules. We find that beat Ic genetically interacts with islet and Lim3in the TN motoneuron subclass and can also rescue the TN fasciculation defects observed in islet and Lim3 mutants. These results suggest that in the TN motoneuron context, Islet and Lim3 may specify axon target selection through the actions of IgSF call-adhesion molecules.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3