Affiliation:
1. Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
Abstract
ABSTRACT
Respiration rate has been used as an indicator of metabolic rate and associated cost of transport (COT) of free-ranging cetaceans, discounting potential respiration-by-respiration variation in O2 uptake. To investigate the influence of respiration timing on O2 uptake, we developed a dynamic model of O2 exchange and storage. Individual respiration events were revealed from kinematic data from 10 adult Norwegian herring-feeding killer whales (Orcinus orca) recorded with high-resolution tags (DTAGs). We compared fixed O2 uptake per respiration models with O2 uptake per respiration estimated through a simple ‘broken-stick’ O2-uptake function, in which O2 uptake was assumed to be the maximum possible O2 uptake when stores are depleted or maximum total body O2 store minus existing O2 store when stores are close to saturated. In contrast to findings assuming fixed O2 uptake per respiration, uptake from the broken-stick model yielded a high correlation (r2>0.9) between O2 uptake and activity level. Moreover, we found that respiration intervals increased and became less variable at higher swimming speeds, possibly to increase O2 uptake efficiency per respiration. As found in previous studies, COT decreased monotonically versus speed using the fixed O2 uptake per respiration models. However, the broken-stick uptake model yielded a curvilinear COT curve with a clear minimum at typical swimming speeds of 1.7–2.4 m s−1. Our results showed that respiration-by-respiration variation in O2 uptake is expected to be significant. And though O2 consumption measurements of COT for free-ranging cetaceans remain impractical, accounting for the influence of respiration timing on O2 uptake will lead to more consistent predictions of field metabolic rates than using respiration rate alone.
Funder
Ocean Life Institute, Woods Hole Oceanographic Institution
National Geographic Society
WWF Sweden
Office of Naval Research
Norwegian Ministry of Defence
Netherlands Ministry of Defence
WWF, Norway
US Office of Naval Research
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献