The influence of 17β-estradiol on intestinal calcium carbonate precipitation and osmoregulation in seawater-acclimated rainbow trout (Oncorhynchus mykiss)

Author:

Al-Jandal Noura J.1,Whittamore Jonathan M.1,Santos Eduarda M.1,Wilson Rod W.1

Affiliation:

1. Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK

Abstract

SUMMARYThe intestine of marine teleosts produces carbonate precipitates from ingested calcium as part of their osmoregulatory strategy in seawater. The potential for estrogens to control the production of intestinal calcium carbonate and so influence osmoregulation was investigated in seawater-acclimated rainbow trout following intraperitoneal implantation of 17β-estradiol (E2) at two doses (0.1 and 10 μg E2 g–1). Levels of plasma vitellogenin provided an indicator of estrogenic effect, increasing significantly by three and four orders of magnitude at the low and high doses, respectively. Plasma osmolality and muscle water content were unaffected, whereas E2-treated fish maintained lower plasma [Na+] and [Cl–]. Plasma [Ca2+] and [Mg2+] and muscle [Ca2+] increased with vitellogenin induction, whereas the intestinal excretion of calcium carbonate was reduced. This suggests that elevated levels of circulating E2 may enhance Ca2+ uptake via the gut and simultaneously reduce CaCO3 formation, which normally limits intestinal availability of Ca2+. Increasing E2 caused an elevation of [Na+] and [Cl–] and a reduction of [HCO3–] in intestinal fluid. We speculate that E2 may influence a number of intestinal ion transport processes that ultimately may influence water absorption: (1) reduced NaCl cotransport, (2) reduced Cl– uptake via Cl–/HCO3– exchange and (3) reduced precipitation of Ca2+ and Mg2+ carbonates. Despite these effects on intestinal ion and water transport, overall osmoregulatory status was not compromised in E2-treated fish, suggesting the possibility of compensation by other organs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3