Excitatory actions of GABA mediate severe-hypoxia-induced depression of neuronal activity in the pond snail (Lymnaea stagnalis)

Author:

Cheung Una1,Moghaddasi Mehrnoush1,Hall Hannah L.1,Smith J. J. B.1,Buck Leslie T.1,Woodin Melanie A.1

Affiliation:

1. Department of Cell and Systems Biology, University of Toronto,Ontario, Canada

Abstract

SUMMARY To characterize the effect of severe hypoxia on neuronal activity,long-term intracellular recordings were made from neurones in the isolated central ring ganglia of Lymnaea stagnalis. When a neurone at rest in normoxia was subjected to severe hypoxia, action potential firing frequency decreased by 38% (from 2.4-1.5 spikes s-1), and the resting membrane potential hyperpolarized from -70.3 to -75.1 mV. Blocking GABAA receptor-mediated synaptic transmission with the antagonist bicuculline methiodide (100 μmol l-1) decreased neuronal activity by 36%, and prevented any further changes in response to severe hypoxia, indicating that GABAergic neurotransmission mediates the severe hypoxia-induced decrease in neuronal activity. Puffing 100 μmol l-1 GABA onto the cell body produced an excitatory response characterized by a transient increase in action potential (AP) firing, which was significantly decreased in severe hypoxia. Perturbing intracellular chloride concentrations with the Na+/K+/Cl-(NKCC1) cotransporter antagonist bumetanide (100 μmol l-1)decreased AP firing by 40%, consistent with GABA being an excitatory neurotransmitter in the adult Lymnaea CNS. Taken together, these studies indicate that severe hypoxia reduces the activity of NKCC1, leading to a reduction in excitatory GABAergic transmission, which results in a hyperpolarization of the resting membrane potential (Vm)and as a result decreased AP frequency.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3