Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains

Author:

Low Jiun T.1,Shukla Alka1,Behrendorff Natasha1,Thorn Peter1

Affiliation:

1. School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia

Abstract

The relationship between the cellular Ca2+ signal and secretory vesicle fusion (exocytosis) is a key determinant of the regulation of the kinetics and magnitude of the secretory response. Here, we have investigated secretion in cells where the exocytic response is controlled by Ca2+ release from intracellular Ca2+ stores. Using live-cell two-photon microscopy that simultaneously records Ca2+ signals and exocytic responses, we provide evidence that secretion is controlled by changes in Ca2+ concentration [Ca2+] in relatively large-volume microdomains. Our evidence includes: (1) long latencies (>2 seconds) between the rise in [Ca2+] and exocytosis, (2) observation of exocytosis all along the lumen and not clustered around Ca2+ release hot-spots, (3) high affinity (Kd =1.75 μM) Ca2+ dependence of exocytosis, (4) significant reduction in exocytosis in the prescence of cytosolic EGTA, (5) spatial exclusion of secretory granules from the cell membrane by the endoplasmic reticulum, and (6) inability of local Ca2+ responses to trigger exocytosis. These results strongly indicate that the control of exocytosis, triggered by Ca2+ release from stores, is through the regulation of cytosolic [Ca2+] within a microdomain.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3