Fast-Start Performance of Rainbow Trout Salmo Gairdneri and Northern Pike Esox Lucius

Author:

HARPER DAVID G.1,BLAKE ROBERT W.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, V6T 2A9 Canada

Abstract

The escape performances of rainbow trout Salmo gairdneri (Richardson) and northern pike Esox lucius (Linnaeus) (mean lengths 0.32 m and 0.38 m, respectively) were measured with subcutaneously implanted accelerometers. Acceleration-time plots reveal two types of fast-starts for trout and three for pike. Simultaneous high-speed ciné films demonstrate a kinematic basis for these differences. Trout performing C-shaped fast-starts produce a unimodal acceleration-time plot (type I) while during S-shaped fast-starts a bimodal accelerationtime plot (type II) results. Pike also exhibit similar type I and II fast-starts, but also execute a second S-shaped fast-start that does not involve a net change of direction. This is characterized by a trimodal acceleration-time plot (type III). Intraspecific and interspecific comparisons of distance, time, mean and maximum velocity, and mean and maximum acceleration rate indicate that fast-start performance is significantly higher for pike than for trout, for all performance parameters. This indicates that performance is related to body form. Overall mean maximum acceleration rates for pike were 120.2±20.0 ms−2 and 59.7±8.3 ms−2 for trout. Performance values directly measured from the accelerometers exceed those previously reported. Maximum acceleration rates for single events reach 97.8ms−2 and 244.9ms−2 for trout and pike, respectively. Maximum final velocities of 7.06ms−2 (18.95 Ls−2) were observed for pike and 4.19 ms−2 (13.09 Ls−2) for trout, where L is body length; overall mean maximum velocities were 2.77 ms−2 for trout and 3.97 ms−2 for pike.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3