Live cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis

Author:

Fortian Arola,Sorkin Alexander

Abstract

Activation of epidermal growth factor (EGF) receptor (EGFR) leads to its interaction with Grb2, a dual-function adapter mediating both signaling through Ras and receptor endocytosis. We used time-lapse three-dimensional imaging by spinning disk confocal microscopy to analyze trafficking of EGFR and Grb2 in living HeLa cells stimulated with low, physiological concentrations of EGFR ligands. Endogenous Grb2 was replaced in these cells by Grb2 fused to yellow fluorescent protein (YFP). After transient residence in the plasma membrane, rhodamine-conjugated EGF (EGF-Rh) and Grb2-YFP were rapidly internalized and accumulated in endosomes. Quantitative image analysis revealed that on average two Grb2-YFP molecules were co-localized with one EGF-Rh in cells stimulated with 2 ng/ml EGF-Rh, and the excess of Grb2-YFP over EGF-Rh was even higher when a receptor-saturating concentration of EGF-Rh was used. Therefore, we hypothesize that a single EGFR molecule can be simultaneously associated with functionally distinct Grb2 interaction partners during and after endocytosis. Continuous presence of Grb2-YFP in endosomes was also observed when EGFR was activated by transforming growth factor-α and amphiregulin, suggesting that endosomal EGFRs remain ligand-occupied and signaling-competent, despite that these growth factors are thought to dissociate from the receptor at acidic pH. The prolonged localization and activity of EGFR-Grb2 complexes in endosomes correlated with the sustained activation of extracellular stimulus-regulated kinase 1/2, suggesting that endosomal EGFRs significantly contribute to this signaling pathway. We propose that endosomal EGFRs function to extend signaling in time and space to compensate for rapid down-regulation of surface EGFRs in cells with low receptor expression levels.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3