Sequential specification of neurons and glia by developmentally regulated extracellular factors

Author:

Morrow Theresa,Song Mi-Ryoung,Ghosh Anirvan1

Affiliation:

1. Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA

Abstract

Cortical progenitor cells give rise to neurons during embryonic development and to glia after birth. While lineage studies indicate that multipotent progenitor cells are capable of generating both neurons and glia, the role of extracellular signals in regulating the sequential differentiation of these cells is poorly understood. To investigate how factors in the developing cortex might influence cell fate, we developed a cortical slice overlay assay in which cortical progenitor cells are cultured over cortical slices from different developmental stages. We find that embryonic cortical progenitors cultured over embryonic cortical slices differentiate into neurons and those cultured over postnatal cortical slices differentiate into glia, suggesting that the fate of embryonic progenitors can be influenced by developmentally regulated signals. In contrast, postnatal progenitor cells differentiate into glial cells when cultured over either embryonic or postnatal cortical slices. Clonal analysis indicates that the postnatal cortex produces a diffusible factor that induces progenitor cells to adopt glial fates at the expense of neuronal fates. The effects of the postnatal cortical signals on glial cell differentiation are mimicked by FGF2 and CNTF, which induce glial fate specification and terminal glial differentiation respectively. These observations indicate that cell fate specification and terminal differentiation can be independently regulated and suggest that the sequential generation of neurons and glia in the cortex is regulated by a developmental increase in gliogenic signals.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3