Mice deficient in Ext2 lack heparan sulfate and develop exostoses

Author:

Stickens Dominique1,Zak Beverly M.2,Rougier Nathalie1,Esko Jeffrey D.2,Werb Zena1

Affiliation:

1. Department of Anatomy, University of California, San Francisco, CA 94143-0452,USA

2. Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687,USA

Abstract

Hereditary multiple exostoses (HME) is a genetically heterogeneous human disease characterized by the development of bony outgrowths near the ends of long bones. HME results from mutations in EXT1 and EXT2,genes that encode glycosyltransferases that synthesize heparan sulfate chains. To study the relationship of the disease to mutations in these genes, we generated Ext2-null mice by gene targeting. Homozygous mutant embryos developed normally until embryonic day 6.0, when they became growth arrested and failed to gastrulate, pointing to the early essential role for heparan sulfate in developing embryos. Heterozygotes had a normal lifespan and were fertile; however, analysis of their skeletons showed that about one-third of the animals formed one or more ectopic bone growths (exostoses). Significantly, all of the mice showed multiple abnormalities in cartilage differentiation, including disorganization of chondrocytes in long bones and premature hypertrophy in costochondral cartilage. These changes were not attributable to a defect in hedgehog signaling, suggesting that they arise from deficiencies in other heparan sulfate-dependent pathways. The finding that haploinsufficiency triggers abnormal cartilage differentiation gives insight into the complex molecular mechanisms underlying the development of exostoses.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3