Avian thermoregulation in the heat: is evaporative cooling more economical in nocturnal birds?

Author:

O'Connor Ryan S.1,Smit Ben2,Talbot William A.3,Gerson Alexander R.4,Brigham R. Mark5,Wolf Blair O.3,McKechnie Andrew E.16ORCID

Affiliation:

1. DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

2. Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa

3. Department of Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 847131-0001, USA

4. Department of Biology, University of Massachusetts, Amherst, MA 01003, USA

5. Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada

6. South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute P.O. Box 754, Pretoria 0001, South Africa

Abstract

Evaporative cooling is a prerequisite for avian occupancy of hot, arid environments, and is the only avenue of heat dissipation when air temperatures (Ta) exceed body temperature (Tb). Whereas diurnal birds can potentially rehydrate throughout the day, nocturnal species typically forgo drinking between sunrise and sunset. We hypothesized that nocturnal birds have evolved reduced rates of evaporative water loss (EWL) and more economical evaporative cooling mechanisms compared to diurnal species, permitting nocturnal species to tolerate extended periods of intense heat without becoming lethally dehydrated. We used phylogenetically-informed regressions to compare EWL and evaporative cooling efficiency (ratio of evaporative heat loss [EHL] and metabolic heat production [MHP]; EHL/MHP) among nocturnal and diurnal birds at high Ta. We analyzed variation in three response variables: 1) slope of EWL at Ta between 40 and 46°C, 2) EWL at Ta=46°C, and 3) EHL/MHP at Ta=46°C. Nocturnality emerged as a weak, negative predictor, with nocturnal species having slightly shallower slopes and reduced EWL compared to diurnal species of similar mass. In contrast, nocturnal activity was positively correlated with EHL/MHP, indicating a greater capacity for evaporative cooling in nocturnal birds. However, our analysis also revealed conspicuous differences among nocturnal taxa. Caprimulgids and Australian-owlet nightjars had shallower slopes and reduced EWL compared to similarly-sized diurnal species, whereas owls had EWL rates comparable to diurnal species. Consequently, our results did not unequivocally demonstrate more economical cooling among nocturnal birds. Owls predominately select refugia with cooler microclimates, but the more frequent and intense heat waves forecast for the 21st century may increase microclimate temperatures and the necessity for active heat dissipation, potentially increasing owls’ vulnerability to dehydration and hyperthermia.

Funder

National Science Foundation

National Research Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3